컴퓨터_구조
차이
문서의 선택한 두 판 사이의 차이를 보여줍니다.
양쪽 이전 판이전 판다음 판 | 이전 판 | ||
컴퓨터_구조 [2012/06/07 14:05] – [Programming Multimedia SIMD Architectures] lindol | 컴퓨터_구조 [2013/12/11 00:46] (현재) – 바깥 편집 127.0.0.1 | ||
---|---|---|---|
줄 23: | 줄 23: | ||
Figure 4.8 summarizes typical multimedia SIMD instructions. | Figure 4.8 summarizes typical multimedia SIMD instructions. | ||
- | 그림 4.8은 일반적인 멀티미디어 SIMD 지침을 요약한 것입니다. | + | 그림 4.8은 일반적인 멀티미디어 SIMD 인스트럭션을 요약한 것입니다. |
Like vector instructions, | Like vector instructions, | ||
줄 277: | 줄 277: | ||
One visual, intuitive way to compare potential floating-point performance of variations of SIMD architectures is the Roofline model[Williams et al. 2009]. | One visual, intuitive way to compare potential floating-point performance of variations of SIMD architectures is the Roofline model[Williams et al. 2009]. | ||
- | SIMD 아키텍처의 변화의 잠재적인 부동 소수점 성능을 비교하기 위해 하나의 시각적, 직관적인 방법은 Roofline 모델[윌리엄스 외 입니다. 2009]. | + | SIMD 아키텍처의 변화로 잠재적인 부동 소수점 성능을 비교하기 위한 하나의 시각적, 직관적 방법은 Roofline 모델이다. |
^ ^ | ^ ^ | ||
| Figure 4.10 Arithmetic intensity, specified as the number of floating-point operations to run program divided by the number of bytes accessed in main memory [Williams et al. 2009]. Some kernels have an arithmetic intensity that scales with problem size, such as dense matrix, but there are many kernels with arithmetic intensities independent of problem size. | | | Figure 4.10 Arithmetic intensity, specified as the number of floating-point operations to run program divided by the number of bytes accessed in main memory [Williams et al. 2009]. Some kernels have an arithmetic intensity that scales with problem size, such as dense matrix, but there are many kernels with arithmetic intensities independent of problem size. | | ||
- | | 메인 메모리[윌리암스 외에 액세스한 | + | | 그림 4.10은 연산의 강도를 |
+ | 일부 커널이 연산의 강도로 | ||
It ties together floating-point performance, | It ties together floating-point performance, | ||
- | 그것은 2차원 그래프에서 부동 소수점 성능, 메모리 성능 | + | 그것은 2차원 그래프에서 |
Arithmetic intensity is the ratio of floating-point operations per byte of memory accessed. | Arithmetic intensity is the ratio of floating-point operations per byte of memory accessed. | ||
- | 산술 강도는 | + | 산술 강도는 메모리 |
It can be calculated by taking the total number of floating-point operations for a program divided by the total number of data bytes transferred to main memory during program execution. | It can be calculated by taking the total number of floating-point operations for a program divided by the total number of data bytes transferred to main memory during program execution. | ||
- | 이것은 프로그램 실행시 메인 메모리로 전송 데이터 바이트의 | + | 이 비율은 프로그램의 전체 부동 소수점 연산의 수를 |
Figure 4.10 shows the relative arithmetic intensity of several example kernels. | Figure 4.10 shows the relative arithmetic intensity of several example kernels. | ||
- | 그림 4.10는 | + | 그림 4.10는 |
Peak floating-point performance can be found using the hardware specifications. | Peak floating-point performance can be found using the hardware specifications. | ||
- | 피크 | + | 부동 소수점의 최고 |
Many of the kernels in this case study do not fit in on-chip caches, so peak memory performance is defined by the memory system behind the caches. | Many of the kernels in this case study do not fit in on-chip caches, so peak memory performance is defined by the memory system behind the caches. | ||
- | 이 사례 | + | 커널의 대부분은 |
Note that we need the peak memory bandwidth that is available to the processors, not just at the DRAM pins as in Figure 4.27 on page 325. | Note that we need the peak memory bandwidth that is available to the processors, not just at the DRAM pins as in Figure 4.27 on page 325. | ||
- | 우리는 | + | 참고로 |
One way to find the (delivered) peak memory performance is to run the Stream benchmark. | One way to find the (delivered) peak memory performance is to run the Stream benchmark. | ||
- | (배달) | + | 최대 메모리 성능을 찾는 |
Figure 4.11 shows the Roofline model for the NEC SX-9 vector processor on the left and the Intel Core i7 920 multicore computer on the right. | Figure 4.11 shows the Roofline model for the NEC SX-9 vector processor on the left and the Intel Core i7 920 multicore computer on the right. | ||
- | 그림 4.11은 왼쪽 NEC SX-9 벡터 프로세서와 인텔 코어 i7 920의 | + | 그림 4.11 왼쪽은 NEC SX-9 벡터 프로세스를 위한 Rootline 모델과, |
The vertical Y-axis is achievable floating-point performance from 2 to 256 GFLOP/sec. | The vertical Y-axis is achievable floating-point performance from 2 to 256 GFLOP/sec. | ||
- | 세로 Y축 2에서 256 GFLOP/초까지 달성 부동 소수점 성능입니다. | + | 세로 Y축은 2에서 256 GFLOP/sec까지 달성할 수 있는 |
The horizontal X-axis is arithmetic intensity, varying from 1/8th FLOP/DRAM byte accessed to 16 FLOP/ DRAM byte accessed in both graphs. | The horizontal X-axis is arithmetic intensity, varying from 1/8th FLOP/DRAM byte accessed to 16 FLOP/ DRAM byte accessed in both graphs. | ||
- | 수평 X 축 16플롭/ | + | 수평 X 축은 산술의 강도로 |
Note that the graph is a log-log scale, and that Rooflines are done just once for a computer. | Note that the graph is a log-log scale, and that Rooflines are done just once for a computer. | ||
- | 그래프는 | + | 참고로 |
For a given kernel, we can find a point on the X-axis based on its arithmetic intensity. | For a given kernel, we can find a point on the X-axis based on its arithmetic intensity. | ||
- | 주어진 커널 위해, 우리는 산술 강도에 따라 X축에 지점을 찾을 수 있습니다. | + | 주어진 커널 위해, 우리는 산술 강도에 따라 X축 지점을 찾을 수 있습니다. |
If we drew a vertical line through that point, the performance of the kernel on that computer must lie somewhere along that line. | If we drew a vertical line through that point, the performance of the kernel on that computer must lie somewhere along that line. | ||
- | 우리가 그 지점을 통해 수직으로 선을 경우 해당 컴퓨터에서 커널의 성능은 그 라인을 따라 어딘가에 누워 있어야합니다. | + | 우리가 그 지점을 통해 수직으로 선을 경우 해당 컴퓨터에서 커널의 성능은 그 라인을 따라서 어딘가 |
We can plot a horizontal line showing peak floating-point performance of the computer. | We can plot a horizontal line showing peak floating-point performance of the computer. | ||
- | 우리는 컴퓨터의 최대 부동 소수점 성능을 보여주는 수평선의 주술하실 | + | 우리는 컴퓨터의 최대 부동 소수점 성능을 보여주는 수평 선으로 구간을 설정할 |
Obviously, the actual floating-point performance can be no higher than the horizontal line, since that is a hardware limit. | Obviously, the actual floating-point performance can be no higher than the horizontal line, since that is a hardware limit. | ||
줄 349: | 줄 350: | ||
How could we plot the peak memory performance? | How could we plot the peak memory performance? | ||
- | 우리가 어떻게 최고의 메모리 성능을 | + | 우리가 어떻게 최고의 메모리 성능을 |
Since the X-axis is FLOP/byte and the Y-axis is FLOP/sec, bytes/sec is just a diagonal line at a 45-degree angle in this figure. | Since the X-axis is FLOP/byte and the Y-axis is FLOP/sec, bytes/sec is just a diagonal line at a 45-degree angle in this figure. | ||
- | X-축은 | + | X-축은 |
Hence, we can plot a third line that gives the maximum floating-point performance that the memory system of that computer can support for a given arithmetic intensity. | Hence, we can plot a third line that gives the maximum floating-point performance that the memory system of that computer can support for a given arithmetic intensity. | ||
- | 그러므로 | + | 이런 까닭에 |
We can express the limits as a formula to plot these lines in the graphs in Figure 4.11: | We can express the limits as a formula to plot these lines in the graphs in Figure 4.11: | ||
- | 우리는 그림 4.11의 그래프에서 이러한 라인을 모략하는 수식으로 | + | 우리는 그림 4.11에서 |
Attainable GFLOPs/sec = Min(Peak Memory BW x Arithmetic Intensity, Peak Floating-Point Perf.) | Attainable GFLOPs/sec = Min(Peak Memory BW x Arithmetic Intensity, Peak Floating-Point Perf.) | ||
- | 달성 GFLOPs/초는 | + | 달성할 GFLOPs/sec = Min( Peak Memory |
The horizontal and diagonal lines give this simple model its name and indicate its value. | The horizontal and diagonal lines give this simple model its name and indicate its value. | ||
- | 수평 및 대각선 라인이 간단한 모델에게 이름을 주고 그 가치를 나타냅니다. | + | 수평 및 대각선 라인이 간단한 모델에게 이름을 주고 그 값를 나타냅니다. |
- | The " | + | The " |
- | " | + | " |
If we think of arithmetic intensity as a pole that hits the roof, either it hits the flat part of the roof, which means performance is computationally limited, or it hits the slanted part of the roof, which means performance is ultimately limited by memory bandwidth. | If we think of arithmetic intensity as a pole that hits the roof, either it hits the flat part of the roof, which means performance is computationally limited, or it hits the slanted part of the roof, which means performance is ultimately limited by memory bandwidth. | ||
- | 우리가 지붕을 눌렀을 때 장대로 | + | 만약 roof의 맟닿은 점을 산술 강도라 생각하면 |
In Figure 4.11, the vertical dashed line on the right (arithmetic intensity of 4) is an example of the former and the vertical dashed line on the left(arithmetic intensity of 1/4) is an example of the latter. | In Figure 4.11, the vertical dashed line on the right (arithmetic intensity of 4) is an example of the former and the vertical dashed line on the left(arithmetic intensity of 1/4) is an example of the latter. | ||
- | 그림 4.11에서 오른쪽에 세로 점선(4산술 강도)는 과거의 예를과 | + | 그림 4.11에서 오른쪽의 세로 점선(4의 산술 강도)은 이전의 예이며 |
Given a Roofline model of a computer, you can apply it repeatedly, since it doesn' | Given a Roofline model of a computer, you can apply it repeatedly, since it doesn' | ||
- | 그것이 | + | 주어진 컴퓨터의 Roofline은 |
Note that the "ridge point," | Note that the "ridge point," | ||
- | 대각선과 수평 | + | 참고로 |
If it is far to the right, then only kernels with very high arithmetic intensity can achieve the maximum performance of that computer. | If it is far to the right, then only kernels with very high arithmetic intensity can achieve the maximum performance of that computer. | ||
- | 그것이 | + | 만약 |
If it is far to the left, then almost any kernel can potentially hit the maximum performance. | If it is far to the left, then almost any kernel can potentially hit the maximum performance. | ||
- | 그것이 멀리 왼쪽에 있다면, 거의 모든 커널은 잠재적으로 최대 성능을 | + | 그것이 멀리 왼쪽에 있다면, 거의 모든 커널은 잠재적으로 최대 성능을 |
As we shall see, this vector processor has both much higher memory bandwidth and a ridge point far to the left when compared to other SIMD processors. | As we shall see, this vector processor has both much higher memory bandwidth and a ridge point far to the left when compared to other SIMD processors. | ||
- | 우리가 보게 될 것이다로서, | + | 우리는 알 수 있습니다. 이 벡터 프로세서는 훨씬 더 높은 메모리 대역폭 및 기타 SIMD 프로세서에 비해 훨씬 왼쪽으로 능선 지점을 모두 가지고 있습니다. |
Figure 4.11 shows that the peak computational performance of the SX-9 is 2.4x faster than Core i7, but the memory performance is 10x faster. | Figure 4.11 shows that the peak computational performance of the SX-9 is 2.4x faster than Core i7, but the memory performance is 10x faster. | ||
- | SX-9의 | + | 그림 4.11은 |
For programs with an arithmetic intensity of 0.25 the SX-9 is 10x faster (40.5 versus 4.1 GFLOP/sec). | For programs with an arithmetic intensity of 0.25 the SX-9 is 10x faster (40.5 versus 4.1 GFLOP/sec). | ||
- | 0.25의 산술 강도가 | + | 프로그램의 산술 강도가 |
The higher memory bandwidth moves the ridge point from 2.6 in the Core i7 to 0.6 on the SX-9, which means many more programs can reach peak computational performance on the vector processor. | The higher memory bandwidth moves the ridge point from 2.6 in the Core i7 to 0.6 on the SX-9, which means many more programs can reach peak computational performance on the vector processor. | ||
- | 높은 메모리 대역폭을 어떤 더 많은 프로그램은 | + | 높은 메모리 대역폭은 |
컴퓨터_구조.1339045541.txt.gz · 마지막으로 수정됨: 2013/12/11 00:46 (바깥 편집)